THE LAST MILE

Mike McPherson, KQ9P 29 October 2016

SENTRY US Outdoor WiFi MIMO Wireless Surveillance System

Hop 5 128-136Mbps

Hops 6th after, the bandwidth throughput will not reduce again, less than 10ms response time delay.

- Need to deploy whenever, wherever
- What we need is
 - 1. "Instant backbone node, just add water"
 - 2. End nodes designed to take full advantage of #1

- Lots of components to address different use cases
 - "Instant backbone nodes"
 - Kitoons helium balloon shaped as an airfoil to counteract wind
 - RC drones long wingspan fixed wing aircraft designed for extended time aloft

- End nodes
 - APRS, Winlink, and other amateur packet technologies
 - 2m/70cm AFSK, 70cm/33cm LoRa, 5.8GHz mesh (modified to be very light weight)
 - Portable AREDN mesh nodes
 - Directional antennas with tracking capability

EXAMPLE USE CASE PUBLIC SERVICE CYCLING EVENT

- Multiple sources of data
 - APRS on SAG/MEDIC/Support vehicles; 2m AFSK uplink
 - Cyclist/runner detection devices at checkpoints, turns, on SAG/MEDIC vehicles; 70cm/33cm LoRa uplink
 - Race HQ registration and timing data; 5.8GHz mesh uplink

EXAMPLE USE CASE PUBLIC SERVICE CYCLING EVENT

- Backbone network
 - One or more RC aircraft loitering over the course carrying digipeaters, LoRa radios, 5.8GHz mesh nodes
 - Fixed 2m digipeaters
 - Fixed CVADN mesh backbone nodes
- Software to integrate and present information useful to hams and race organizers

- Lots of questions to be answered through analysis and experimentation
 - How many aircraft/balloons are required to cover a given area?
 - What power levels and antennas are required for reliable communications?
 - What are the regulatory and public relations issues to be managed?
- Big payoff potential to solve last mile problem *and* could yield immediate operational capabilities

THANKS!

Mike McPherson, KQ9P mike@kq9p.us